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Abstract 

The perceptibility of scanner noise as a function of 
resolution is studied using a model for the human visual 
system and for the scanner noise. The visual system is 
modeled using a point-wise nonlinearity followed by a 
lightness contrast-sensitivity-function. The noise model 
incorporates a signal-dependent noise component and a 
signal-independent noise component. The system is 
analyzed to determine the perceived signal-to-noise ratio 
(SNR) as a function of the measured SNR. The findings 
support the intuition that as resolution is increased a lower 
measured SNR is acceptable because the eye effectively 
averages over the pixels at the higher resolution. Roughly 
speaking, the acceptable levels of measured SNR are 
inversely proportional to the resolution of the scanner. The 
overall impact of increasing resolution in a scanner by 
changing the sensor while keeping the lamp and the optics 
fixed is also analyzed in the same framework. The analysis 
indicates that if the signal-dependent component of the 
noise dominates, the perceived SNR does not degrade with 
increased resolution, but if signal-independent noise is also 
significant, the perceived SNR degrades with an increase in 
resolution.  

Introduction 

When calculating a signal-to-noise (SNR) ratio, the standard 
deviation of the noise signal is commonly used as a noise 
metric due to its ease of computation. Its numerous 
shortcomings are well known. The biggest one being that it 
does not take into account the perceptibility of the noise. In 
scanners, as resolution is increased the light gathering area 
per pixel is reduced – resulting in a reduced signal level 
(assuming the lamp output is not increased to compensate) 
and consequently a decrease in SNR. Thus if an SNR 
specification is set independent of scanner resolution (and 
viewing parameters for the scanned images), it is harder to 
meet the specification as the resolution increases. As the 
resolution is increased (and viewing parameters remain 
unchanged), a greater fraction of the noise energy is 
distributed in the higher frequencies, which are not as 
visible. This would indicate that a lower SNR would be 
tolerable at higher resolutions. Several researchers have 
used modified noise metrics that take into account 
perceptibility. The most common of these use filtered noise 

energy as a correlate of perceived noise instead of simply 
using the complete (unfiltered) noise energy. Typically, this 
is performed by using a simple linear shift invariant model 
of the human constrast sensitivity which defines the “filter” 
used for filtering the noise. A more detailed description of 
the motivation and use of such an approach in image coding 
can be found in Mannos and Sakrison1. In this paper, we 
apply a similar methodology for evaluating a more 
perceptual noise metric for scanners and use that metric to 
determine how much degradation in measured SNR can be 
tolerated with increase in resolution.  

Simplified Vision Model 

For the analysis in this paper, in order to evaluate the 
perceived impact of noise added to an image the simple 
vision model shown in Figure 1 is used. This model is 
adapted from Mannos and Sakrison.1 The model consists of 
a point wise non-linearity representing the conversion from 
measured luminance to perceived lightness and a band-pass 
lightness contrast sensitivity function. The point wise 
nonlinearity is represented as the CIE lightness function 
(which is the common approximation to the transformation 
from a luminance input space into a perceived lightness 
space): 
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The second stage representing the lightness contrast 
function is expressed as a linear shift invariant filter with 
separable 2-D frequency response given by: 

( ) ( ) ( )yrxryx fHfHffH =,      (2) 

where fx and fy are the spatial frequencies along the x and the 
y spatial dimensions, respectively, and  

( ) )114.0exp()114.00192.0(6.2 fffHr −+=   (3) 

Note the model differs from the one presented in 
Mannos and Sakrison1 in two respects: firstly the model in 
the original paper assumed a radially symmetric contrast 
sensitivity function and secondly the argument of the 
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exponent had a power of 1.1. Both these simplifying 
assumptions, do not change the contrast sensitivity function 
(CSF) sufficiently to have an impact on the results and 
conclusions of this paper. However, they allow analytic 
integration and evaluation of perceived noise power and 
SNR.  
 

Freq ->

Lightness Perception
Pt-wise Nonlinearity

l(u) = u (1/3)

Lightness Contrast
Sensitivity Function
h(m,n) ↔ H(fx,fy)

Input Image
y( m,n)

Perceived Image
l(y( m,n))⊗h(m,n)

 

Figure 1. Simple Vision Model for obtaining an approximate 
perceived image. 

 
While the model is simplistic, it captures the major 

characteristics of the human visual system and therefore 
allows us to capture first order effects. A more complete 
model (based on the several visual difference predictors in 
the literature) could alternately be used but the required 
simulations would be time consuming and harder to 
interpret.  

System Model  

Figure 2 shows the system model used for the analysis in 
this paper. The model computes a perceived difference-
noise image between a noise-less input image i(m,n) and an 
image with additive scanner noise. The perceived image of 
the original image is obtained by propagating it through the 
visual model. The perceived image of the image with 
scanner noise is calculated by adding the scanner noise to 
the original noiseless image and then propagating the sum 
through the visual model. The difference between these two 
perceived images represents the perceived noise. The 
notation used is as follows: 
 
i(m,n)  - original noise-less image 
v(m,n)  - scanner noise 
d(m,n) = i(m,n) + v(m,n) - noisy “ scanned”  image 
vp(m,n) - perceived noise image 
li(m,n) = l(i(m,n)) - input image after the point-wise 
lightness nonlinearity 
 

If the visual model of the last section is used, the 
perceived noise image can be written as 

vp(m,n) = h(m,n) ⊗ l( i(m,n)+v(m,n))–h(m,n) ⊗l( i(m,n) )   
 = h(m,n) ⊗ [ l(i(m,n) + v(m,n)) – l(i(m,n) ) ]  (4) 

where ⊗ represents the convolution operation.  
The energy of vp(m,.n), defined as, Σ (vp(m,n) )^2 can 

then be used as an indicator of the perceived noise energy in 
the image. This expression assumes that the bandwidth of 
H(fx,fy), the Fourier Transform of h(m,n), is less than half the 

sampling frequency, fs (which is a good approximation for 
typical scanner resolutions). 

 

Noiseless Image
I(m,n) +

Scanner Noise
v(m,n)

+

Visual
Model

Visual
Model

-

+

Noisy Scanned  Image
I(m,n) + v(m,n)

Perceived Noise  Image
vp(m,n)

 

Figure 2. System Model for obtaining Perceived Approximation to 
an Image. 

Perceptual Signal to Noise Ratio 

Using the system model presented in the last section, a 
perceptual or visual SNR (VSNR) based on a visual model 
can be defined in much the same way as SNR is defined, 
VSNR=√(perceived signal energy / perceived noise energy) 
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where fx , fy denote the spatial frequencies along x and y 
spatial directions, respectively; fs represents the sampling 
frequency, ),( yxv ffP

p
 denotes the power spectral density 

of vp(m,n) the perceived noise image (assumed to be at least 
wide-sense stationary); and the remaining functions 
indicated by upper case letters are the (spatial) Fourier 
transforms corresponding to their lower case counterparts. 

Scanner Noise Model 

Scanner noise arises from two sources: a signal dependent 
shot noise component and a signal independent 
random/dark noise component. The standard deviation of 
the shot noise is proportional to the square root of the signal 
level (due to poisson statistics for photon arrival). 
Accordingly, it is assumed that the expression for the noise, 
v(m,n), at any pixel is given by: 

v(m,n) = σ1 √ i(m,n) v1(m,n) + σ2 v2(m,n)   (6) 

The first term part represents the image-dependent 
noise which has a standard-deviation proportional to the 
square-root of the signal level, with σ1 as the proportionality 
factor (throughout this paper we will assume that the input 
image is normalized to lie between 0-black and 1-white). 
The second term represents the signal independent noise. 
The noise terms, v1(m,n) and v2(m,n) are assumed to be 
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uncorrelated spatially and with each other, with zero-mean, 
and unit variance. 

Perception of Noise in Uniform Patches 

While the methodology described above could conceptually 
be used to determine the perceptibility of noise in any image 
or any class of images, in most cases simulations or 
simplifications would be required for evaluation of the 
VSNR. In this paper, we consider the case for uniform input 
images i(m,n) = i, for which the analysis can be done in 
closed form using simplifying assumptions. Using the 
scanner noise model presented in the last section, for a 
uniform image with stationary, white noise, the power 
spectral density of the noise (power/unit area) is given by 

syxv fiffP /)(),( 2
2

2
1 σσ += 2       (7) 

Conventionally, the “ measured”  scanner signal to noise 
ratio at a given signal level is defined as  
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The expression for the perceived noise in equation (4) 
can be simplified by assuming the added noise v(m,n) is 
small. In this case the Taylor series can be used to 
approximate 

)],()),(([),(),( ' nmvnmilnmhnmvp ⊗≈    (9) 

Using this approximation perceived SNR reduces to  

)()()0,0( sHi fWSNRiKHVSNR= ,      (10) 

where 

( ) )/()()( ' iililiK =  

is a signal level dependent term that does not depend on 
resolution ( sf ), and the function 
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captures dependence of perceptual SNR on resolution sf . 

A plot of the function )( sH fW  which relates 
perceptual SNR to measured SNR as a function of scan 
resolution is shown in Figure 5 for a 25 cm viewing 
distance. The plot of the function shows a minimum at 
approximately 175 dpi indicating that the scanner noise is 
most visible at a scanner resolution (sampling frequency) of 
175 dpi. This minimum corresponds to the scanner 
sampling frequency at which the scanner noise is “ most 

visible”  on either side the visibility of scanner noise is 
reduced. The minimum arises due to the band-pass nature of 
the lightness contrast function chosen. If the lightness 
contrast function is chosen to be low-pass, the function will 
be a monotonically increasing function of sf . Note also 
that the decrease in noise perceptibility for low sampling 
frequencies is not really useful because use of these lower 
sampling frequencies would introduce aliasing and other 
undesirable artifacts in images other than uniform patches. 
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Figure 3. Function WH( sf ) relating perceptual SNR to measured 

SNR as a function of resolution. 

 
Note that for scanner resolutions over 250dpi, 

perceptual SNR is related to the “ measured”  SNR in almost 
direct proportion to the resolution. This can also be 
intuitively inferred by looking at (11) and the lightness 
contrast sensitivity function in (3). The lightness contrast 
sensitivity function falls to a level very close to zero at high 
spatial frequencies. Therefore, as the scanner resolution is 
increased beyond 250dpi, the denominator term in equation 
(11) remains unchanged because the increased interval of 
integration for the denominator term corresponds to a 
region over which the CSF is close to zero and therefore 
does not contribute anything. This clearly indicates that at 
higher resolutions a much lower “ measured”  SNR should be 
acceptable because it is equivalent to a lower perceptual 
SNR. Note however, that this assumes that the image is not 
magnified/scaled up after scanning and that the viewing 
distance is fixed. 

Measured SNR Variation with Resolution 

The analysis of the previous sections provided a means for 
relating measured SNR to perceptual SNR. For scanner 
design, it is also useful to understand how change in 
resolution impacts measured SNR. Typically, the resolution 
of a scanner is increased by increasing the number of pixels 
in the sensor array used for image capture. Thus in order to 
double the scanner resolution along each dimension a single 
“ pixel site”  is split into 4 pixel sites. If it is assumed that the 
scanner lamp and optics are left unchanged, the impact of 
increasing the resolution by increasing the number of 
elements in the sensor array can be analyzed using the 
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assumption that the light incident on the sensor array is 
unchanged. The signal level for each pixel is then dependent 
on the area of the pixel site. Consider the case when the 
sampling frequency is changed from an original value f0 to a 
new value f1 , with 01 / fft =  representing the factor by 
which the sampling frequency is changed (in each 
direction). If the original signal strength per pixel is S0, the 
signal strength when the resolution is changed by a factor t 
in both x and y directions is given by S0/t

2 (since the area 
per pixel is scaled by t2). The signal dependent portion of 
the noise is due to the Poisson statistics of photons and its 
variance will therefore also be scaled by the same factor. If 
we assume that the signal independent noise is unchanged 
with change in resolution, and the original SNR is given by 
the expression of equation (8), the measured SNR at the 
new resolution at a signal level i is given by  
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Note that if the signal independent component of the noise 
is small, the above equation indicates that the measured 
SNR is in inverse proportion to the sampling frequency. 

Overall Impact of Change in Resolution on 
Perceptual SNR 

Equation (12) can be substituted in equation (11) to obtain a 
single expression for the perceived SNR that comprehends 
the overall impact of change in resolution: incorporating 
both the effect of perception and the change in noise 
statistics due to change in sensor pixel area. For the rest of 
this section, it is assumed that the noise statistics σ1 and σ2, 
for the noise model in equation (6) are computed at a certain 
reference sampling frequency (resolution) f0 the noise 
statistics for a different resolution are computed from these 
statistics using the model of the last section. The perceived 
SNR corresponding to a sampling rate (resolution) of f1 is 
then given by 
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where the approximation is valid for resolutions over 250 
dpi. If 
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i.e., the signal independent component of the noise is 
negligible as compared to the signal dependent noise (13) 
reduces to a constant value independent of the resolution. If 
alternately, it is assumed that the signal dependent noise is 

negligible compared to the signal independent noise, the 
visual SNR in (13) varies inversely with the resolution. The 
assumption of negligible signal dependent noise is however, 
unrealistic due to the inherent Poisson statistics of photon 
arrival. Typically, both signal dependent and signal 
dependent noise are present. For the rest of this analysis, we 
consider specific numbers for evaluating the perceptual 
SNR: a reference sampling frequency of f0=400dpi and 
noise std. deviations σ1=0.0024, σ2=0.0025. These numbers 
correspond to actually estimated noise variances from a 
scanner. For these chosen values, relative overall VSNR 
(normalized wrt the VSNR value at 400dpi) is shown in 
Figure 4 (for a signal level i=1). Note that due to the signal 
independent noise component, the overall perceptual impact 
of changing resolution while keeping other scanner 
components (lamp, sensor) fixed is a decrease in perceptual 
SNR. The decrease however is at a much smaller rate than 
what would be expected based purely on the “ faster-than-
linear”  rate of decrease in measured SNR indicated by 
equation (12).  
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Figure 4. Overall relative VSNR (wrt 400dpi) as a function of 
scanner resolution. 

Conclusions 

Scanner specifications defined in terms of measured SNR 
should be dependent on scanner resolution. A good rule of 
thumb applicable for typical scanner resolutions of interest 
is that the scanner SNR specified at a higher resolution can 
be degraded (scaled down) by the same factor by which the 
scanner resolution is scaled up. If the scanner resolution of a 
scanner is increased by simply splitting the pixel area of a 
sensor into multiple sensors while keeping the light level 
and the scanner optics identical, the perceived SNR 
degrades with increasing resolution. The rate of degradation 
depends on the relative amounts of signal dependent and 
signal independent noise. If the signal dependent noise 
dominates, there is little change in perceptual SNR with 
increase in resolution (for typical scanner resolutions). If the 
signal independent noise dominates, the perceptual SNR 
falls by a factor proportional to the increase in resolution. 
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